
Summary
Currently Zabbix uses different syntax for triggers, calculated and aggregated items. It is confusing.

Also the existing syntax does not support certain trigger expressions limiting our abilities to create complex problem conditions.

It would be great to introduce more powerful universal syntax that will be suitable for everything: triggers, calculated and aggregated items.

Zabbix acceptance
Zabbix will support new syntax for trigger expressions, calculated and aggregated items.

1. General design principles for the new syntax
a. As simple as possible for new users of Zabbix
b. Must support expressions as function parameters like func3(10*func1(), func2(), 123)
c. Easy upgrade from the older syntax reusing existing database schema with functions but without loss of existing functionality
d. Existing trigger functions must be reviewed and simplified if possible

2. Trigger expressions
a. No filters and complex aggregate functions will be allowed in trigger expressions

3. Calculated checks
a. Calculated items must use new syntax

4. Aggregated checks
a. Syntax of the existing aggregate functions must be changed to use new syntax
b. Formula for aggregation must be moved from item key to Formula field similar to calculated items

i. Therefore any valid string can be used as item key for aggregate item
ii. Note that the item key must contain at least one LLD macro in order to make item key different from item prototype key

c. Existing grpavg, grpmin, grpmax and grpsum functions must be changed to new functions
d. Zabbix must not support aggregated items anymore

i. Existing aggregated items must be converted into calculated items
5. Scope of use for LLD and user macros must remain the same or extended
6. BNF grammar must be created and documented
7. Documentation changes

a. The changes must be well documented and release notes updated
b. Much more examples should be given for trigger expressions and calculated items showing new capabilities

New syntax

Time periods

Two existing parameters sec|#num and time_shift will be merged into one, which will be defined as:

N values
min(/host/key, 5), minimum of the last 5 values

Time period
min(/host/key,5m), minimum for a period of 5 minutes (time suffix is given)

Time period or N values with Time shift
min(/host/key, 5:now-1d), minimum of the last 5 values one day ago (time shift is given)
min(/host/key, 1h:now-1d), minimum for a period of 1h one day ago
min(/host/key, 1h:now/1h), minimum for the last hour

Note that value shift will not be supported:

min(/host/key, 10, 20): not supported

Item reference and filters

An item can be referenced using the following syntax:

/host/key: single item
//key: item of the current host (useful for definition of calculated items)

A set of items can be referenced this way:

/*/key: set of items matching any host
/host/key[abc,*]: items matching key wildcard key[abc,*]
/*/key?[group="ABC" and tag="tagname:value"]: items having tag "tagname:value" matching any host of group "ABC"
/*/key[a,*,c]?[(group="ABC" and tag="Tag1") or (group="DEF" and (tag="Tag2:" or tag="Tag3:value")]: a combination of various filters

Current syntax v.s. new syntax

Current syntax New syntax

Trigger
expressions

{host:key.func(params)}=0 func(/host/key, period, params)

{host:key.min(#3)}>0 and {host:key.max(1h)}>100 min(/host/key,3)>0 and max(/host/key,1h)>100 Number N
without time
suffix is a
reference to N
values
Time suffix is
mandatory for
time periods

{host:key.last()}>0 last(/host/key)>0 If period is
missing, last

value is
returned

{host:key.prev()}>0 last(/host/key,1) or prev(/host/key)

{host:vfs.fs.size[/,pfree].last()}<10 last(/host/vfs.fs.size[/,pfree])<10

{host:vfs.fs.size["/var/log",pfree].last()}<10 last(/host/vfs.fs.size["/var/log",pfree])<10

{host:key.min(1h, 24h)}<10 min(/host/key, 1h:now-24h)<10 Time shift

{host:key.trendavg(1M, now/M)} > 1.2*
{host:key.trendavg(1M, now/M-1y)}

trendavg(/host/key,1M:now/M) >
1.2*trendavg(/host/key,1M:now/M-1y)

N/A: Aggregate function with parameters as
expressions

min(min(/host/key,1h), min(/host/key,1h), 25)

N/A: Aggregate function with many parameters of
various types, another example

min(min(/host/key,1h), avg(/host/key,1h), 25)

N/A: Using expressions as parameters min(min(/host/key,1h), avg(/host/key,1h)*100, 25)

N/A: Calculate func() of multiple data sources or
expressions

min(min(/host1/key1, 1h),min(/host2/key2,1h))

N/A: Absolute time periods min(/host/key, 1d:now/d+1d)
min(/host/key, 1d:now/d) or
trendmin(/host/key,1d:now/d)
min(/host/key, 2d:now/d+1d)
min(/host/key, 1w:now/w) or
tremdmin(/host/key,1w:now/w)

today
yesterday
last 2 days
previous week

Calculated
items

func(key, 30m) or
func(host:key, 30m)

func(//key, 30m)
func(/host/key, 30m)

func1(host1:key1, 30m, param) + func1(host2:key2,
30m, param)

func1(/host1/key1, 30m, param) + func1(/host2/key2,
30m, param)

100*last("vfs.fs.size[/,free]/last("vfs.fs.size[/,total]") 100*last(//vfs.fs.size[/,free]) / last(//vfs.fs.size[/,total]) //key/ is a
reference to
/current
host/key/

avg("Zabbix Server:zabbix[wcache,values]",600) avg(/Zabbix Server/zabbix[wcache,values], 10m)

last("net.if.in[eth0,bytes]")+last("net.if.out[eth0,bytes]") last(//net.if.in[eth0,bytes])+last(//net.if.out[eth0,bytes])

N/A: Calculate aggregate function using filter sum(/host/vfs.fs.size[*,free], 10m)

N/A: Complex filters for data sources sum(/hostA/vfs.fs.size[*,pfree]?[tag="Service:" or
tag="Importance:High") and (group="Production" or
group="Preproduction"], 5m)

Filtering by
host groups
and items
tags will be
supported

N/A: Absolute time periods for trend functions trendavg(/host/key,1M:now/M) >
1.2*trendavg(/host/key,1M:now/M-1y)

Aggregated
items

grpmin["Servers",qps,avg,5m] min(avg_foreach(/*/qps?[group="Servers"], 5m)) In
func_foreach()
foreach prefix
means that
the function
will be
executed for
each array
element.
Array will be
returned as a
result.

grpsum["MySQL Servers","vfs.fs.size[/,total]",last] sum(last_foreach(/*/qps?[group="MySQL Servers"]))

grpavg[["Servers A","Servers
B"],system.cpu.load,last]

avg(last_foreach(/*/qps?[group="Servers A" or
group="Servers B"]))

Conversion of existing trigger function

Existing functions will be transformed to a new syntax according to this table.

Function New Parameters Comments

Function New Parameters Comments

abschange
change

abs(last(1)-
last(2))
last(1)-last(2)

- The amount of absolute difference between last
and previous values.
The amount of difference between last and
previous values.

avg, min, max, sum (sec|#num,
<time_shift>)

avg, min, max
, sum

item, period OR
expr1, ...,exprN

avg(/host/key, 5m) OR
min(min(/host/key),2*10,100*sum(3,4,5))

band (<sec|#num>,mask,<time_shift>) band item, period, mask Value of “bitwise AND” of an item value and mask.

count (sec|#num,<pattern>,<operator>,
<time_shift>)

count item, period,
<operator>, <pattern>

Number of matching values

date, dayofmonth, dayofweek, now, time date
dayofmonth
dayofweek
now
time

- Current date in YYYYMMDD format
Day of month in range of 1 to 31
Day of week in range of 1 to 7 (Mon - 1, Sun - 7)
Number of seconds since the Epoch
Current time in HHMMSS format

delta (sec|#num,<time_shift>) max-min Difference between the maximum and minimum
values within the defined evaluation period ('max()'
minus 'min()').

diff last(1)<>last(2) Check if last and previous values differ

forecast (sec|#num,<time_shift>,time,
<fit>,<mode>)

forecast item, period,time,
<fit>,<mode>

fuzzytime (sec) fuzzytime item, period Check how much an item value (as timestamp)
differs from the Zabbix server time.

iregexp (<pattern>,<sec|#num>) find item, period,
<operator>, <pattern>

Check if there is at least one value that matches
regular expression.

last (<sec|#num>,<time_shift>) last item, period Return last value

logeventid (<pattern>) logeventid item, <pattern>

logseverity logseverity item

Function New Parameters Comments

logsource (<pattern>) logsource item, <pattern>

nodata (sec) nodata item, period Return 1 if no elements, 0 - if there are elements

percentile (sec|#num,
<time_shift>,percentage)

percentile item, period,
percentage

prev last(2) - prev() will no longer be supported

regexp (<pattern>,<sec|#num>) find item, period,
<operator>, <pattern>

Check if there is at least one value that matches
regular expression.

str (<pattern>,<sec|#num>) find item, period,
<operator>, <pattern>

Check if there is at least one value that contains
this string.

strlen (<sec|#num>,<time_shift>) length(last) expr Length of values in characters (not bytes).

timeleft (sec|#num,<time_shift>,threshold,
<fit>)

timeleft item,period,time,
<fit>,threshold, <fit>

trendavg, trendcount, trenddelta,
trendmax, trendmin, trendsum (period,
period_shift)

trendavg |
trendcount
| trenddelta |...

item, period trenddelta will not be supported anymore

New trigger functions

The following new trigger functions wl section contains list of alternative syntaxes that have been declined for various resons.

New
function

Parameters Comments

abs expr Return absolute value of the expression. For example: abs(last(/host/key,1)-
last(/host/key,2))

find item, period,
<operator>, <pattern>

Check if there is at least one value that matches condition

Nonfunctional requirements

1. The new syntax must not worsen existing level of performance

Use cases

1. I want to calculate minimum of two different items in trigger expression
2. I want simpler calculated checks, I do not want to be confused by existence and different syntax of aggregate and calculated checks
3. I want same syntax for triggers, calculated and aggregated items. Why confuse users with different syntax?

Decisions made

1. No dotted notation like last().avg()
2. No filters and complex aggregates will be allowed in trigger expressions
3. Period and timeshift will be merged into single parameter period<:timeshift> and "now" is mandatory

a. 2h
b. 1d:now-1h
c. 1M:now/M-30d/d-1h

4. No syntax #N will be supported anymore, time suffixes are mandatory now
5. No support of advanced syntax like last(/host/key/clock), last(/host/key/log/eventid), last(/host/key/logeventid), avg(/host/key/trends/avg,1M,now/M). Can be

implemented later if needed.
6. No support of expressions in function parameters like in count(/host/key, 1h, eq, last(/host/key2))

a. It cannot be converted to functionids
7. Functions prev(), change(), abschange() and diff() will not be supported
8. No filtering by regexp for item keys for now
9. No filter by value using syntax like /host/key/?[value=123], use count() or find() instead

10. It will not be possible to get access to other item attributes, at least in scope of this development:
/host/key</attribute>: access item attribute
/host/key/clock: retrieve item timestamp
/host/clock/trends/min | max | avg | count | clock: retrieve trend data

11. No protection from heavy calculated checks that may significantly affect Zabbix performance will be implemented (say, aggregation for millions of items)

