Database info:

version: PostgreSQL 9.6.2
size: 38GB

rows in affected tables:

o graphs — 98,266

© graphs_items — 296,739
o items — 586,273

o hosts — 19,616

© hosts_groups — 20,068
o rights — 1,117

...and much smaller MySQL database, just to see query plans.

Typical graph.get requests looks as follow. I will use it to explain changes later.

SELECT ..

FROM .. WHERE NOT EXISTS (SUBQUERY1) AND NOT EXISTS (SUBQUERY2) AND NOT EXISTS

(SUBQUERY3) AND other conditions;

Possible improvements:

By limiting suBQUERY2 and SUBQUERY3 it is possible gain improvement of speed (in my tests
by ~15%, but it strongly depends on configuration of graphs).

o Changes in limit-subquery-2-and-3.patch

Joining SUBQUERY2 and SUBQUERY3 into a single query also gives small improvement, but
much smaller than previous option (filtering out NULLs without subquery) and also
conflicts with it. Improvement would be around 0.5% in execution speed.

o Changes in join-subquery-2-and-3-into-one-subquery.patch

Selecting host group in main query (instead of suBQuERY1) gives improvement of speed of
actual execution time by around 1/3. Memory consumption, as well as expected cost is
around %2 lower. This comes with worse readability and risk of errors, but I was not able to
get some.

o Changes in group-selection-in-main-query.patch

This is a little bit out of scope (since not an API problem), but if user has thousands of hosts
and each if them has multiple graphs, graph drop-down filter generation in Monitoring —
Graphs takes a lot of time. I worked with user which hsa permissions to 78K+ graphs.
Before selecting Host group or Host, all graphs are listed in graph filter drop-down and
printed on screen. CpageFilter::getGraphsCB() takes 2,5 seconds just to generate drop-down
object and populate it with graphs (and rises to 4,5 seconds if order_result is changed to
CArrayHelper::sort). It takes also multiple seconds for data transfer and HTML rendering.
On the other hand, since most of hosts inherits it’s graphs from templates, there are only 8
unique graph names (out of 78K). I do not see any reason why repeating graph names must
be listed multiple times if user cannot distinguish one host’s graph from others, without
using host drop-down. I believe this can be done somehow smarter. Btw, this is also a case
of ZBX-7706 (the query submitted in description do not have a hostid). An what is even
worse — even super-admins cannot feel safe.

What totaly doesn’t work (I kept this list shorter to look more optimistic):

In my tests performance was decreased if accessibility of hosts or host groups was checked
separately and added to query directly.



Separately selecting all accessible graph items also gives much worse result in terms of
speed. In my tests, graphitem.get worked very slow if called without specified graphids.
Rewriting suBQuErY1 in such a way that will select only rows that Ex1isTs (instead of noT
EXISTS) also gives almost no result. Estimated cost is a bit lower, but actual time, loops
executed and memory was exact same for both approaches.



